Cover Image for Convert the Column Type from String to Datetime Format in Pandas DataFrame in Python
151 views

Convert the Column Type from String to Datetime Format in Pandas DataFrame in Python

To convert a column type from a string to a datetime format in a Pandas DataFrame, you can use the pd.to_datetime() function. This function allows you to convert string representations of dates and times into actual datetime objects in Pandas. Here’s how to do it:

Assuming you have a DataFrame named df with a column named 'date_column' containing date values as strings:

import pandas as pd

# Sample DataFrame
data = {'date_column': ['2023-10-05', '2023-10-06', '2023-10-07']}
df = pd.DataFrame(data)

# Convert the 'date_column' to datetime format
df['date_column'] = pd.to_datetime(df['date_column'])

# Check the updated DataFrame
print(df)

In this example, we:

  1. Import the Pandas library.
  2. Create a sample DataFrame (df) with a column named 'date_column' containing date values as strings.
  3. Use the pd.to_datetime() function to convert the 'date_column' to datetime format and assign the result back to the same column in the DataFrame.

After running this code, the 'date_column' will be converted to a datetime format, and you can perform various datetime operations on it. If the date strings have a time component, the resulting datetime objects will include both date and time information.

Ensure that the date strings are in a format that Pandas can interpret correctly. If the format is different from the standard ‘YYYY-MM-DD’, you can specify the format using the format parameter of pd.to_datetime(). For example:

# Convert date strings in a custom format to datetime
df['date_column'] = pd.to_datetime(df['date_column'], format='%d/%m/%Y')

In this case, the format parameter specifies the custom date format used in the date strings. Adjust it according to your data’s format.

YOU MAY ALSO LIKE...

The Tech Thunder

The Tech Thunder

The Tech Thunder


COMMENTS