Cover Image for NumPy Functions in Python
145 views

NumPy Functions in Python

NumPy is a powerful library for numerical and scientific computing in Python. It provides a wide range of functions and features for working with arrays, matrices, and numerical data. Here are some commonly used NumPy functions and features:

1. Creating Arrays:

  • numpy.array(): Create a NumPy array from a list or other iterable.
  • numpy.arange(): Create an array with evenly spaced values within a specified range.
  • numpy.linspace(): Create an array with evenly spaced values over a specified interval.
  • numpy.zeros(): Create an array filled with zeros.
  • numpy.ones(): Create an array filled with ones.
  • numpy.eye(): Create a 2D identity matrix.
  • numpy.random.rand(): Create an array with random values from a uniform distribution.
  • numpy.random.randn(): Create an array with random values from a standard normal distribution.
  • numpy.random.randint(): Create an array with random integers within a specified range.

2. Array Operations:

  • Arithmetic operations: NumPy arrays support element-wise arithmetic operations (+, -, *, /, **).
  • numpy.dot(): Compute the dot product of two arrays (matrix multiplication).
  • numpy.transpose(): Transpose an array or matrix.
  • numpy.sum(), numpy.mean(), numpy.median(), numpy.min(), numpy.max(): Compute statistics on arrays.
  • numpy.sort(): Sort an array.
  • numpy.argmax(), numpy.argmin(): Find the indices of the maximum and minimum values.

3. Indexing and Slicing:

  • NumPy arrays support indexing and slicing similar to Python lists.
  • You can use integer indexing, slicing with colon notation, and boolean indexing to access and manipulate elements.

4. Reshaping and Manipulating Arrays:

  • numpy.reshape(): Change the shape of an array.
  • numpy.concatenate(): Join arrays along an existing axis.
  • numpy.split(): Split an array into multiple sub-arrays.
  • numpy.append(), numpy.insert(), numpy.delete(): Add, insert, or remove elements from an array.
  • numpy.unique(): Find the unique elements of an array.

5. Mathematical and Statistical Functions:

  • numpy.sin(), numpy.cos(), numpy.exp(), numpy.log(), numpy.sqrt(): Perform various mathematical operations on arrays element-wise.
  • numpy.sum(), numpy.mean(), numpy.median(), numpy.var(), numpy.std(): Compute statistics on arrays.
  • numpy.correlate(), numpy.cov(): Calculate the correlation or covariance between two arrays.

6. Broadcasting:

  • NumPy allows operations between arrays of different shapes through broadcasting.
  • Broadcasting automatically expands smaller arrays to match the shape of larger arrays for element-wise operations.

7. File I/O:

  • numpy.save(): Save an array to a binary file.
  • numpy.load(): Load an array from a binary file.
  • numpy.savetxt(): Save an array to a text file.
  • numpy.loadtxt(): Load an array from a text file.

8. Linear Algebra:

  • numpy.linalg.inv(): Compute the inverse of a matrix.
  • numpy.linalg.det(): Calculate the determinant of a matrix.
  • numpy.linalg.eig(): Compute eigenvalues and eigenvectors of a matrix.
  • numpy.linalg.solve(): Solve a linear system of equations.

These are just a few examples of the many functions and capabilities that NumPy provides. NumPy is a fundamental library for data manipulation and scientific computing in Python, and it forms the foundation for many other data science libraries and tools.

YOU MAY ALSO LIKE...

The Tech Thunder

The Tech Thunder

The Tech Thunder


COMMENTS